#0037: Tip for securing a cabled USB type-A plug and socket together

#0037: Tip for securing a cabled USB type-A plug and socket together

Preamble

This is a quick budget tip for securing a cabled USB type-A male and female plug and socket together. This technique could probably be extrapolated for use with other plug types. However I have yet to do so.

Tip for securing a USB type-A male and female plug and socket together

Now onto the tip. Simply put, I use an elastic band to hook the two plugs together. That’s it. Done. Thank you for reading…

Still here? Okay, now onto the part where we explore in excessive detail such a simple concept. One so simple you probably have immediately intuited the basic theory of operation. If not then here it is. Basically, the elastic band applies a pulling pressure that keeps the plug and socket engaged. This is especially useful when you have an otherwise loose connection, typically caused by issues such as weak retention springs within the female socket. Something that seems common to USB extension cables in my opinion. At least the ones I have encountered.

Method of application

I like to start by using a basic cow hitch to lasso one of the plugs. This is done by folding the band into a loop and simply inserting a plug into this loop. Then tightening it around the plug’s plastic shoulders. That’s a basic cow hitch.

Now, with the other side of the elastic band wind it around the plastic shoulders of the second plug a couple of times until the elastic is reasonably taught. Then insert the male into the female plug. And done. The band should now exert force that will keep pulling them together.

Elastic band application demonstration video

Best practices

For best results, I recommend using a reasonably strong elastic band. I also recommend only wrapping it around the plug’s plastic enclosure itself, and not involving their respective cables. This is so that no force is applied to the cables themselves. Force which may aid in the development of faults such as repetitive flex damage, or a kink in the cable. Additionally when the band is secured on the plug body it focuses and directionalises the force in a way that better pulls the cable ends together.

An attentive reader may notice that in one of my example images, the one with the beige elastic. The upper band loop is a little bit too high up, and sits on the plastic wire strain relief itself, rather than the plastic plug body. What can I say? Do as I say, not as I do. đŸ˜‰ Its really not a huge deal either way. Securing the loop on the plug body is just what I consider best practice.

Why not use adhesive tape instead?

Alternatively to using elastic bands, you may think: why not use tape to adhere the two ends together? Briefly put, tape is messy – it leaves glue residue when removed, it’s too permanent or hard to remove, and probably most importantly: it doesn’t put pressure on the plugs to keep them together. So as time passes the plug could slowly but steadily slip out of it’s respective socket. Due to things like vibration, gravity, or general handling.

Closing thoughts and my use-case summary

In my particular use-case, I use elastic bands like these to keep the USB extension cables attached to my 4 Watt USB lights and their switches. The weak retention springs within the female USB sockets on the extension cables allow any plugs inserted into them to eventually slip out.

I used to use electrical tape to manage this but, as time went on the tape lost it’s adherence. Yet left a mess of melted glue residue. After this I switched to using duct tape, but it was too strong, and too difficult to easily remove when I wanted to. Hence the bands. Third time the charm it seems.

So far, just common garden variety elastic bands seem to work best for me in this application. Whatever you can find is fine. Funny thing is, I didn’t even buy them. I just collected the ones that my mail man keeps dropping around my door.

All in all. This is an example of a zero budget application of junk that has gained value via use. At least I found it to be so. Anyway, I hope this article is of use to you. At the very least I hope I can raise a little awareness of the genuine potential uses of random household miscellanea. And that it may assist you in exploring alternative DIY solutions to purchasing one’s way out of any given problem. I know I have been guilty of that.

Thank you for reading.

#0035: repair and analysis of a talon style folding lock knife

#0035: repair and analysis of a talon style folding lock knife

Preamble

I was recently given this folding lock knife to fix for someone. The internal mechanisms of which I found mildly interesting, so I figured it would be worth the time to document it. It may also prove useful for future reference incase I come across something similar.

Initial observations

The first thing that I noticed whilst examining this unit is the unusual blade shape. This is a talon type blade. It is a single edged, crescent shaped blade that curves forwards and terminates in a single point. It’s crescent shape, coupled with the blade edge being on the inner concave curve: give it both a visual as well as function resemblance to the talons of birds of prey. The blade is designed to roughly function in the same way: to pierce and then to hook. This shape of blade can easily convert slashing motions into pierces, due to the blade tip being the leading contact point.

The blade description above may lead you to think that the pictured example knife is a deadly weapon. And that would be the case, at least if not for my second immediate observation. Which is that this knife is a mass produced (I assume) chinese special tacticool toy knife.

It is rather cheaply made, and only really aesthetically resembles the weapon that it is aping. This pictured knife is just a box cutter. That is also it’s literal function currently. Its what the knife’s owner, who is a warehouse operative uses it for. It is also the only thing that it can be used for in my opinion.

Faults

The main thing that was wrong with this unit is that it was not maintained properly. The owner did not tighten the various torx screws on this thing as they worked themselves loose. This led to various joints and mechanisms developing too much play in them. This then resulted in the blade being seated at a crooked angle. Which in turn allowed the blade tip to scratch the handle as it was retracted into it.

Additionally due to the owner’s negligence: some of the various screws that loosened over time, fell out entirely and were consequently lost. This is rather unfortunate, because these fittings consisted of a paired torx screw and socket nut; that where sized to fit flush into the recesses of the handle plates. The socket nut especially is rather annoying to replace. Requiring a specific purchase as it is rather uncommon, and wouldn’t likely be present in any of my bins of miscellaneous salvaged hardware.

The blade itself also has an issue. The main one being that it is made from a miscellaneous soft junk metal; and the second one is that it was currently dull. So it required a basic sharpening, in order to make this knife operable. At least for the relatively short time period that the blade’s soft metal can maintain a serviceable edge.

Parts list

A complete version of this locking knife consists of several discrete components:

  • 1 x camouflage painted outer metal knife handle plate (left)
  • 1 x camouflage painted outer metal knife handle plate (right)
  • 1 x black painted metal inner frame with spring compartment insert gap
  • 1 x black painted metal inner frame with blade locking wedge
  • 1 x black painted metal finger guard with box cutter point
  • 1 x grey painted talon style blade
  • 1 x metal spring
  • 1 x metal spring compartment
  • 2 x plastic washers
  • 4 x smaller black painted metal hex screw and blind nut set
  • 1 x larger black painted metal hex screw and blind nut set
  • 1 x black painted metal trouser clip
  • 3 x black painted hex screws for the trouser clip

Tools and materials

Tools:

  • Round edge metal file
  • Knife sharpener rod
  • Torx screwdrivers (T7, T9)
  • Tweezers

Materials:

  • plumber’s grease (or equivalent)

Repair

There really isn’t much to say on the repair itself, as its pretty straight forward. I disassembled then reassembled the knife; fixing everything dodgy about it as I went.

Actions:

  • Completed knife disassembly.
  • Bent the blade locking wedge on the inner frame so that it stops the blade from folding closed more reliably.
  • Greased the blade’s damaged plastic washers to help prevent future wear.
  • Bent the blade spring’s hook into a right angle in order to get a better hold on the blade.
  • Re-greased the blade spring within the spring compartment due to presence of dry grease here.
  • Re-tightened all the screws and socket nuts that keep the housing together.
  • Added a stand-in replacement for a missing screw and socket nut pair that consists of two screws and a salvaged threaded brass insert nut.
  • Added a plastic screw and nut to help hold frame. I chose plastic so that I could cut down the screw and round off the nut easily so that it doesn’t snag the user’s hand.
  • Performed a basic sharpening on the blade using a metal file, then honed the edge using a knife sharpening rod.

The actual repair itself is hardly anything to be proud of. It wasn’t a hard repair and didn’t even take long. However this knife has been saved from going into the rubbish bin, for at least another couple of months, and that should be the main take home. This thing is ready for work again; and should stay that way for quite a while.

Before and After video demo

Before

After

Recommended modifications

1) Grinding the blade edge and sharpening.

The knife blade could use a proper grinding and sharpening: if it to be used for anything more involved than opening boxes. I recommend grinding the blade down so that the angle of the blade edge slopes smoothly up to the mid-ridge. That way the blade can have more acutely angled edge.

This will consequently make the blade sharper than it currently is. A smaller angle will also remain sharper for longer whilst in use, due to the relative thinness of the new blade edge. Even as it dulls. Although the blade will also likely become more brittle and likely to snap as a consequence of the severe loss of material this newly angled edge will require.

2) Installing a blade backstop.

A blade backstop will stop the blade from over-rotating when it is extended. It will also prevent the blade from wobbling when extended by sandwiching it between the backstop and the blade locking wedge.

This knife likely already had a blade backstop of sorts, as it already has the screw holes where on could be mounted. However it was probably lost during use. As it is the blade overextends backwards when it comes in contact with any material that resists it.

3) Thread locker on the screws.

Thread locker such as “Locktite 243” when applied to screws prevents them from slowly working themselves loose during operation, due to factors such as vibration. This will extend the lifespan of this knife when applied to the screws that hold the frames together, as it will mean that they will (largely) no longer need to be checked and re-tightened at intervals.

And since we have already established that this knife’s owner is averse to maintaining his equipment: the lower the level of maintenance this knife needs, will be proportional to the extension of it’s operational lifespan. I.e. it will last as long as it lasts, if the thread locker can keep it together for longer, than it will last a little longer as a consequence.

4) Installation of additional retaining bolts.

I think that installing a few additional bolts and nuts to keep the frame together would greatly increase the overall structural strength of this folding knife. As it would share the strain of keeping the unit together amongst more points. This would allow this knife to be used in applications that require more force.

Although one has to be careful not to drill and install any bolts within the blades seating area within the knife handle housing, or within it’s pathway. Common sense right?

Post mod roles

As it is this knife tool is weak and too dull for any real work beyond cutting the tape off of cardboard boxes. however I theorise that if the above mods are made, then one would end up with a stronger, sharper, and more stable tool.

This would then allow the tool to used in a broader array of applications. For example light wood working, or bush craft applications. A talon style blade is good in both of those applications. The sharp hooked point is good for carving detail into wood. The concave blade is good for gripping and working with rounded objects like natural woods (sticks and branches). For example: for sharpening sticks, or for feathering wood to create tinder. It is also good for harvesting (in this case smaller) plants; as the concave blade helps bundle the stems together when cutting. Like a miniature sickle.

I could go on but I hope you get the point. The issue here is not with the knife’s design, it is with it’s flawed construction. If that could be remedied (or at least alleviated), then this knife could actually become a useful tool. It just requires work to get there.

Closing thoughts

Honestly, I actually rather dislike these types of low-cost low-quality mass produced items. This knife for example: it’s low-cost promotes replacement rather than repair: as it can very quickly make many repairs in it’s owner’s eye deemed as uneconomical. And that is assuming that the owner has a mend-and-make-do mentality to begin with. Most contemporary consumers do not. They have a use and replace mentality.

The main reason why a person may want to repair these things in my mind: is either philosophical (i.e. environmental conscientiousness, fiscal responsibility, anti-consumerist sentiments, etcetera); emotional sentimentality (e.g. hand-me-down from a relative); or if they are in severe financial strife and literally can’t afford to replace a £3.99 work knife.

Now look at it’s cheap build and materials. This factor exacerbates the issue above. Chiefly because it lowers the tools operational lifespan. This is the time it is in use, before it somehow breaks on it’s owner. Hence sooner putting them in a position to make the call on whether or not to either repair or replace the tool.

I do consider a knife like this to have been built with planned obsolescence in mind. Even though the term is hardly used for mechanical hand tools like knives; as it is usually reserved for electronic or computer products.

However, consider this: if the user does no maintenance on this knife. Then there are only so many operational hours that it is capable of before completely falling apart, or at the very least becoming inoperable. It’s shoddy build quality purposefully limits this simple hand tools lifespan. And when it is over, the user is expected to then purchase another one. That is a form of planned obsolescence.

I hate preaching, but please consider not buying this kind of shite. There are better alternatives available. Such as buying second hand quality tools. I always advise that people do the requisite research first. Then spend what they can afford in order to get the best value tools that they can, for their specific use case.

I said “Best value”, not most expensive. A chrome-vanadium spanner is a chrome-vanadium spanner at any price. Just because a person pays more for a brand name, doesn’t necessarily mean that their chrome-vanadium spanner is better than the off brand one.

Nowadays, it’s rather likely that they were both made in the same factory from the same material stock. An idea that would be laughable, if it wasn’t also true. Many brands on the market don’t manufacture anything. They purchase orders from the same OEMs then label the products as their own.

*proceeds to mount high horse.

If you absolutely have to purchase at the bottom of the market because you absolutely have no more money to spend. Then spend time instead. Time upgrading, fortifying, and maintaining your tool. This is so that it can last as long as you need it to. Or at the very least extend the time intervals between new purchases.

That being said, it is an unfortunate reality that most people who do mindlessly purchase bottom of the market products like this knife: are either unable; or more commonly, unwilling to invest time in their tools. They are in many cases content to use the shoddy tool in the short time until it breaks. Then purchase another bottom of the market shoddy tool to replace it with. Repeating this loop of short-sighted wasteful false-economy ad infinitum.

*proceeds to dismount high horse.

I feel that I should somewhat qualify my rather negative sentiments against these types of bottom market products. In the past I have worked within a small recycling facility, one that primarily serviced my local community on behalf of the local council, as well as the surrounding areas. (The point is that we weren’t shipping it’s garbage in.) I worked there as a materials sorter.

It gave me a certain perspective on the sheer volume of material wastage people engaged in. For a supposedly poor community, the amount of waste of useful materials was astounding. Every night I came across hundreds (not hyperbole) of very useable tools of all kinds. Everything from: screwdrivers, knives, drill bits, and spanners, to pots, pans, skillets, as well as whole bicycles some nights. All of that thrown away for recycling.

Many of these things were in decent conditions. Conditions that required either basic maintenance such as: sharpening, some hammering, replacing a handle, or realigning, or even a simple old fashioned cleaning. Gasp! Working there made me dislike a lot of these products; as when I now see them new: I think of where they’ll likely end up in less than a years time … In the fucking trash.

I just don’t like companies purposefully making tools/products that have such a short lifespan designed into them. I doubly don’t like it when these same products are purchased, used, and then wastefully discarded, by people whom I have heard a thousand times: claim poverty. But that’s another rant entirely.

Thank you for listening. It really helps.

Term glossary

OEM – Original Equipment Manufacturer

#0034: Repair and analysis of a tap cartridge

#0034: Repair and analysis of a tap cartridge

Preamble

I recently had to repair a constantly dripping kitchen faucet, and thought that I may as well document it. Especially since I found the construction of the cartridges within the tap to be rather interesting. Although I must say that the title does make me feel a bit silly.

Tools and Materials used

Tools:

  • crescent wrench / 17mm wrench
  • nylon spudger / pry tool
  • phillips screwdriver
  • soft bristle toothbrush
  • plastic container
  • pipette
  • teaspoon

Materials:

  • petroleum jelly / plumber’s grease
  • vinegar
  • water

Tap cartridge inspection

I’d like to start by examining the water faucet’s cartridges themselves, as this information will be relevant later during the repair. The two pictured cartridges were taken from a quarter turn kitchen tap. This is a tap that only requires the handle to be turned 90 degrees around it’s axis, in order for it to go from a fully shut to a fully open state, and vice versa.

This type of cartridge is designed so that water flows into it from the central hole at it’s bottom inlet. This water then flows up inside it’s shaft, and through the two holes within the first ceramic disc. It is then diverted out through the two radial holes on it’s side via the second ceramic disc. At which point the water has a direct route to the faucet head.

This particular type of cartridge has two ceramic/plastic discs within it, that in conjunction with each other operate as a single water control valve. They do this by establishing a water tight seal between them; a press fit seal that is created by the two discs merely pressing against each other in a way that eliminates any gaps between them.

This seal is demonstrated within the video below, where you can see a suction effect take place between the two discs. This suction helps the two discs adhere to each other when wet. This is only possible due to the absolutely smooth surface of the first disc, coupled with the hollow cups present on the second disc’s contacting surface.

These two ceramic valve discs are both keyed to fit into their brass metal shaft in one particular orientation. This orientation has the bottom disc operate as a fixed or stationary valve. Whose job it is to split the ingressing water into two separate streams. It does this via the two distinct triangular quarter-circle holes within it. This lower disc is keyed to fit into the inner wall of the cartridge’s cylindrical housing in a way that makes it immovable.

Whereas the top disc is keyed into the rotating tap handle cylinder attachment. This allows the tap handle to control the rotation of the upper disc. This upper disc is cut in a way that either blocks the two water channels provided by the bottom disc when closed; or when open: diverts water from the holes of the bottom disc outwards to the radial holes in the cartridge housing. This water is then further diverted up and out of the tap for use.

The reason why it only takes a quarter turn to fully open the water channels of this type of cartridge: is due to the placement of holes and channels within these ceramic discs. The first (bottom) disc has two oppositely placed holes within it. Each taking up approximately a quarter section of the circular valve.

This quartering is then reflected within the top ceramic disc. Which consists of two opposing cupped flat plates, and two opposing angled wedges: which veer off to the radial holes within the brass cartridge housing. And since these channels take up opposing quarters of their discs – it only takes a quarter turn to either align both holes of the bottom plate with the upper disc’s water outlet ramps, which then allows water to pass; or with the flat plates, which then blocks the water at both holes.

Cartridge operation demo video

Valve operation demo video

Suction effect demo video

Dripping fault Analysis

Dripping fault cause theory

The fault that causes a dripping tap can be due to a number of different factors. Probably the most straight forward scenario includes water simply making it’s way around the rubber o-rings and/or water gasket. This could happen if the rubbers have gotten old or heat damaged, and started contracting or cracking as a result. Alternatively, they could’ve been disturbed or are otherwise not seated correctly in order to form an effective water barrier.

This means that whatever water does manage to get around these seals can then bypass the cartridge altogether and shortcut it’s way to the faucet head. The severity of the leak in this case would be directly proportionate to the ineffectiveness of the rubbers to seal out water.

Another issue could be within the cartridge itself. With water entering the cartridge and then passing through the cartridge valve by squeezing between the two ceramic disc plates due to an imperfect seal. This pressure fit seal between the two disc plates could be undermined by a number of different factors.

The most likely of which are a build up of limescale on the the ceramic discs themselves. Limescale is a broad term to encompass residual build up of the carbonates present in drinking water; such as calcium and magnesium carbonate. Water rich in minerals like this is often referred to as “hard water”.

Limescale build up on the contact surfaces between the ceramic discs, can cause them to then become uneven as the limescale adheres to them. Specifically the drip issue is caused because the valleys in this now uneven surface provide the water a small pathway across the pressure seal’s threshold when it is closed.

Another issue that could cause the valve to no longer function effectively is scoring of the inter-disc surface. Essentially scratches that then allow some water to pass through their valleys when the valve is closed. A likely cause of this could be something as basic as wear and tear. The two discs grinding each other down over an extended period period of time due to standard use. This happening with just the minor friction created from repeated opening and closing over time, eventually compromising the watertight seal as disc surface material is lost.

Before moving on, I should mention that this section is largely speculation. Basically educated guesses based on my observations during the disassembly. That being said these theories above are the one’s that I went into this repair with.

Dripping fault effect

A continuous drip may initially seem like a minor fault, because it is. However, this fault incurs a waste of resources. A slow but continuous one, that is hard to easily assess. Simply put it wastes water, and probably more than you might expect as well. Just because it only wastes a drop at a time, it doesn’t mean that it isn’t wasting a lot cumulatively. It just makes it difficult to easily see the totality of wastage.

Sampling methodology

Let’s try to get a rough idea of how much water is lost due to this fault. Note that this is not going to be very scientific. It is just a test to get a rough idea of water wastage. With that in mind, there are two discrete pieces of information that are required: 1) is the average water droplet volume; and 2) the number of water drips within a set period of time. In this case the sample time will be 1 minute.

I captured a single drop using a teaspoon. Then sampled it using a random plastic pipette that I had on hand. I repeated this a few times and found the droplets to be rather consistent in volume. Unfortunately, due to the pipette’s lack of precision, I was forced to visually estimate this volume between it’s labelled increments.

Collected observations

  • This leaky tap consistently provided around 13 drips within any one minute period.
  • With each drop having a volume of approximately 0.3 ml each.

Water drip rate and predictive volume lost

  • 1 minute: 13 drips @ 3.9 ml
  • 1 hour: 780 drips @ 234 ml
  • 1 day: 18720 drips @ 5616 ml (~5.6 litres)
  • 1 week: 131040 drips @ 39312 ml (~39 litres)
  • 1 month: 524160 drips @ 157248 ml (~157 litres)

Leaking faucet demo videos

Droplet sampling demo video

Leak conclusion

Interesting result. If a household either has a limited water supply (e.g. off-grid), or is on a metered supply where they pay for water by volume; then 157 litres lost in wastage in a single month by a single tap is not insignificant.

I hope this has illustrated how important it is to fix even minor faults such as this as soon as possible. 157 litres of water used could very well cost a metered household more money on the fault’s first month on the household’s monthly water consumption bill, than a complete cartridge replacement for that tap otherwise would have.

Repair process

Getting at the parts

First thing first. Common sense. I switched off the water by closing the main water valve for the house. This was located under the kitchen sink for me. This is an essential step in the same way as one would switch off the electricity before working on an electrical outlet, one needs to turn off the water before working on a water outlet. You’d think that was common sense right? But I have seen too many plumber fail videos online that say otherwise.

After giving the kitchen faucet a once over, and looking online I decided that the tap cartridges are the most likely suspects for the drip, so I set upon getting at them. Since I have never taken a kitchen sink tap apart before, I engaged in what I call an exploratory disassembly. Prodding and poking the device looking for hidden clips and screws.

To cut to the point: I used a nylon spudger to pry open the (metal coloured) plastic screw cover on each tap. I recommend using a plastic pry tool to avoid scratching the finish off of any part of the tap. Next. I unscrewed the phillips metal screws which attached each tap handle to the rotatable cartridge cylinder section below them. After setting aside the tap handles, I then removed the full cartridge assembly from the faucet housing using a wrench. As for disassembling the cartridges themselves, they come apart toolessly in-hand. That’s it. Easy.

Inspection

Like every repair, this one begun with a thorough inspection. A basic visual inspection did not reveal anything obviously wrong with either cartridge to my eyes. However once I disassembled both hot and cold units, I noticed that the internal plastic disc valves on the cold water side felt rough to the touch. Likely indicating a build up of limescale. Most notably this was even apparent on the surfaces between the two valves. And since these two surfaces come together to form the press fit seal that controls water flow: I concluded that this was likely the specific cause to this particular leak.

Limescale build up is nothing unusual for my particular location, as I do live in a heavy water area. However the odd part was that all the limescale build up was on the cold water side cartridge of our kitchen tap. With little to none on the hot water cartridge. This is really unusual in my opinion because I believe that higher temperatures should exacerbate limescale build up. The average water kettle should be a testament to this theory. However in this case the limescale build up was only sufficiently present on the cold water side.

A working theory I have concerns the on demand water heater which directly supplies this tap – a boiler which my household recently (1.5 years) had professionally installed. I believe that it has some-kind of water filter (or softener, or descaler…) that has been fitted to minimize limescale build up within the unit as it heats water. This means that the hot water provided by it to the tap would have less mineral contaminants (i.e. be softer) than the cold side. I would verify this, but it is not a pressing issue and not worth digging the unit out at this moment to confirm.

Cleaning the cartridge

Once I decided that it was limescale that was undermining the valves press-fit seal, I decided to take the already disassembled cartridges and submerged them into a vinegar solution. The idea is that the mild acid of vinegar will react with the alkaline limescale and dissolve it into the liquid solution.

After about an hour, I removed the parts and brushed them all down with a basic toothbrush in order to remove any loosened remaining debris. I did however take care not to scratch or score the plastic valves as any scoring would also undermine their ability to form a watertight seal; as this would allow water would pass through the miniscule divots that would be present on the seal’s contacting surfaces.

With regards to this method, I should note that I made exceptions for the rubber parts of the cartridges. The blue o-rings and red/blue rubber gasket. I just did not feel comfortable submerging them in an acidic solution for extended periods. I feared that it may affect the chemistry of the rubber material and ‘dry’ it out. Thus causing it to crack or split; and consequently be no longer effective as a waterproof seal. (FYI the pictures below are lying.)

Testing

After a quick rinse in tap water I decided to reassemble the cartridges and put them back into service for extended testing. Although the leaking was significantly reduced as it didn’t drip continuously as before: it still dripped regularly. This was tested by leaving an empty cup under the tap head overnight. I’d regularly find the typical coffee cup I used at least half-full come morning.

This lead me to surmise a number of scenarios:

1) That the water was making it in between the the plastic valve seals. Likely due to surface scoring caused by either my cleaning/brushing of the valve discs; or the limescale itself being ground into the discs as they operated over the years.

2) Water is making it’s way around the gaskets and o-rings, in addition to bypassing the valves. And that I have only remedied/alleviated one issue.

Greasing the cartridge components

With these conclusions I decided to then purchase some plumber’s grease. Thinking that it would be perfect for the application of assisting the plastic disc valves and rubber gaskets to form water tight seals. The Ebay listing for it explicitly stated just that.

However once the product arrived, I decided that I wouldn’t be testing it’s efficacy as I decided that it was not fit for use. The reason why: was that the little tin came with a whole host of warnings on it’s label. Warnings typically associated with poisonous chemical products.

Particularly the “Do not eat, drink, or smoke …” around this product warning gave me pause. Especially when coupled with the fact that the very vapours from this thing were an irritant. It emitted a vapour that was a mild irritant to the eyes and nose, smelling almost minty like the ointment “tiger balm”.

So despite the labelling assuring me that it is indeed appropriate for use within water faucets, I decided that this was not something that I wanted coming in contact with my drinking water – and ultimately ending up inside me. Maybe I am just paranoid. Maybe not.

Either way if an irritant chemical has warnings not to ingest it, and by using it for it’s intended purpose you are essentially guaranteeing ingestion. Maybe don’t use that chemical. Ultimately, it all just comes down to personal choice, and how much you trust anonymous Ebay sellers over your own intuition.

Personally I just found a substitute: Petroleum Jelly. A non irritant, non toxic chemical that routinely comes in contact with human skin and lips. So chances are good that it won’t do any harm if you accidentally ingest some with your drinking water.

Additionally unlike the plumber’s grease, the jelly can be used with rubbers like the o-rings and gaskets. I used to use some back in school within the science lab. A small amount was applied to the mouth of a bunsen burner’s rubber gas hose in order to help form a gas-tight seal between it and it’s brass attachment. I remember it even hydrating the dry red rubber of those hoses. Although I am pretty sure that petroleum jelly is also flammable so I’m not sure if that was a particularly safe application for it. :/

However within this application: my only concern with petroleum jelly is it’s longevity in the system, and heat resistance. However those are considerably less concerning than putting poison in a drinking tap. So after greasing everything up: the o-rings, the rubber gasket, and the plastic valve discs, then tighten everything down properly – I did note further improvement. Now the faucet barely leaks at all. Barely being the keyword here.

Jobs a gudd’un mate.

Post repair review

I left some time after the repair for observation before writing this review and it seems the leak is slowly returning after a month. A month of constant use keep in mind. I am still chalking it up as a success because this repair really only needed some basic tools and materials. The only consumables used are just household sundries like vinegar and pure petroleum jelly. So it can be done for next to nothing.

There are even more things I could do short of purchasing replacement cartridges, and that would be to use an additional o-ring under the main water ingress rubber gasket. This will put more pressure on the plastic disc valves. Squashing them together to form an even tighter pressure fit seal between them.

Although there are likely drawbacks to this, including and not limited to: firstly, a stiffer tap – the more downward pressure on the cartridge mechanism, the harder it would be to rotate it; and secondly, the higher pressure on the discs themselves would cause them to grind against each other more, and likely shorten their lifespan by promoting scraping of their contact surfaces.

Although if you are repairing it in the first place, chances are that they are already well towards their end-of-life, in which case this fix will extend it couple of months before they likely fail into a unrepairable state. At which point replacing the ceramic discs will be needed. Just my guess.

Closing thoughts

Not much to say here really, I surmised my thoughts on the repair itself within the Post repair review above. So I’ll go with a more personal note here.

I actually enjoyed looking at this tap cartridge more than I thought I would. It really is amazing what people are capable of creating through iterative design and mass production. It reminds me of the gaming concept of min-maxing: of getting the most out of the lest.

I mean look at the simple design and construction of this cartridge. It uses two plastic/ceramic discs to create a watertight seal by just pressing against each other. Undoubtedly the results of iterative cost cutting to the point of being adequate or acceptable, and little more.

I know that when I usually talk about cost cutting, especially when discussing mass produced goods: its usually in a negative light. That’s because the stimuli or catalyst for those tangential rants tends to be a product that is sub par, and in my opinion not fit for purpose. Products that I refer to as “factory fresh e-waste”.

However that is not the case here, these cartridges are fit for purpose. But they are also (in my humble opinion) built down to a price point. One that makes economical sense. Look at the bill of materials here for example: a brass housing and insert, a retaining clip for the insert, a metal washer, two o-rings, a water gasket, a metal screw, two plastic/ceramic discs, and maybe one or two additional miniscule hidden parts that I missed. That is a list that has been reduced to the absolute necessities and little more, but nothing less either. I admire the philosophy honestly.

Anyway, enough gushing about the tap. Since I repaired it: it’ll do that itself in a year or two ;). Upon looking up the Ebay prices for replacements, I noticed that they are very cheap. (At least the generic versions.) The average price for a set of two is £10; and if you wanted to repair your own two cartridges with a kit of replacement o-rings, gaskets, and ceramic discs, then that’ll set you back around £2.50. Very doable.

As a final note, if you found yourself confused as to why I kept referring to the cartridge discs as both made out of plastic and ceramic. Well, this is because the unit I was working on (pictured) felt like plastic to me. A hard somewhat brittle plastic.

However upon looking them up online, apparently they are all ceramic. I also wrote the repair section during the repair process prior to this; and I decided to leave it as plastic because that’s what I felt that material was while I was handling it. Although I am by no means an expert on such things, if the internet says that it’s ceramic then I guess it likely is.

Thank you for reading.

Links, references, and further reading

https://en.wikipedia.org/wiki/Hard_water

#0032: Instructions on digitising physical documents

#0032: Instructions on digitising physical documents

Preamble

This will be a quick guide to anyone who may be interested in creating their own digital archives of physical documents. Although there are undoubtedly any number of different ways to achieve this task: I only intend to show you one method. The method that I specifically use (at the time of writing) in order to create, label, modify, and archive document files. Files such as the ones hosted on this website’s “Device Document Scans” page.

Hyperlink: https://www.tinkerersblog.net/device-document-scans

Tools and equipment

Hardware:

  • flatbed scanner
  • personal computer

Software:

  • Linux Mint (operating system)
  • Bash terminal (TUI program for accessing other TUI programs)
  • simple-scan (GUI scanning program)
  • GIMP (GUI WYSIWYG image manipulation program)
  • ImageMagick convert (TUI image manipulation program)
  • img2pdf (TUI file format conversion program)
  • xviewer (GUI image displayer program)
  • xreader (GUI PDF displayer program)

Process overview

1) Scanning the physical document.
2) Initial edit, and virtual file export of scanned images.
3) Edit of image dimensions and watermark application.
4) Creation of alpha-less versions of the edited images.
5) Compilation of all alpha-less images into a single PDF file.
6) Test, organisation, and archiving of files.

Process explained

1) Scanning the physical document.

I use the flat bed scanner on a Pantum M6607NW laser printer scanner combo, in conjunction with a standard GUI GNU/Linux program called simple-scan. One by one I scan all the document’s pages using a 300 DPI (Dots Per Inch) image fidelity setting.

2) Initial edit, and virtual file export of scanned images.

I use simple-scan to export all the raw scanned images in a lossless PNG image file format.

Although simple-scan has some basic image editing functionality, such as image rotation and cropping; I tend to shy away from cropping images here due to the lack of precision available with the tool. However a rough crop to minimize image file size can be useful at this stage. Especially when scanning documents with a smaller page size (e.g. A5); which would otherwise have a lot of needless (memory consuming) white-space in each image.

Additionally, I find that rotating whole images at this stage using simple-scan to be a better experience than rotating them later using GIMP (or even xviewer). This is because, anecdotally: it seems to use less system resources for some reason. It’s just a smoother experience.

As for the outputted files themselves: I like suffixing metadata information onto the file name. In this case “_300DPI_scan”. This is to help identify specific files when they all get archived together.

It also adds a certain element of future-proofing because I may want to create higher or lower DPI versions of the same documents for specific purposes in the future; without it causing a naming conflict, and upsetting my global naming scheme.

Output:

generic_manual_p1_300DPI_scan.PNG
generic_manual_p2_300DPI_scan.PNG
generic_manual_p3_300DPI_scan.PNG …

3) Edit of image dimensions and watermark application.

I use GIMP (GNU Image Manipulation Program) to crop each page image with pixel perfect uniformity (i.e to the same image dimensions). Then I apply my watermark to each page and then export them as PNG images again. I mark the exported PNG files with the ‘WM_’ prefix to differentiate them from the original PNG images, which would otherwise have the same file name.

For the sake of clarity I should state that I keep all the original files (raw scan images) just incase I need to work with them again, and for some reason I do not wish to use the edited versions. It’s good practice to always keep and archive the original unadulterated images for instances like these.

Input:

generic_manual_p1_300DPI_scan.PNG
generic_manual_p2_300DPI_scan.PNG
generic_manual_p3_300DPI_scan.PNG …

Output:

generic_manual_p1_300DPI_scan.PNG
generic_manual_p2_300DPI_scan.PNG
generic_manual_p3_300DPI_scan.PNG …

WM_generic_manual_p1_300DPI_scan.PNG
WM_generic_manual_p2_300DPI_scan.PNG
WM_generic_manual_p3_300DPI_scan.PNG …

4) Creation of alpha-less versions of the edited images.

I use the terminal “convert” program to remove the alpha layers of every PNG image. This is because “img2pdf” can not compile PNG images into a PDF that contains alpha layers. (I.e. clear sections/layers within an image). If you try to, img2pdf will return an error message that contains additional instructions. Unfortunately it will still also output a 0 byte PDF file which you will have to delete.

Error message:

WARNING:root:Image contains transparency which cannot be retained in PDF.
WARNING:root:img2pdf will not perform a lossy operation.
WARNING:root:You can remove the alpha channel using imagemagick:
WARNING:root: $ convert input.png -background white -alpha remove -alpha off output.png
ERROR:root:error: Refusing to work on images with alpha channel

The “convert” command options assigns the background colour to the image as white. This is the colour that replaces any clear (or alpha) sections of the image. Next the alpha sections of the image are removed, then all alpha functionality of the PNG file is switched off.

Please note the exact order that the command options are passed to the program is not important, I only state this order for human understandability. Additionally the “convert” program does not actually convert the original files inputted into it, it instead outputs a modified copy. It will however overwrite the original file if you give the output file an identical name.

I suffix the “_no_alpha” label onto the the outputted files to differentiate them from their predecessors. Although as you can see the file names are getting long and unwieldy, especially if the manual itself already has a long name. However the various prefixes and suffixes all serve a purpose and are necessary for file version distinction.

Command:

convert WM_generic_manual_p1_300DPI_scan.PNG -background white -alpha remove -alpha off WM_generic_manual_p1_300DPI_scan_no_alpha.PNG

Input:

WM_generic_manual_p1_300DPI_scan.PNG
WM_generic_manual_p2_300DPI_scan.PNG
WM_generic_manual_p3_300DPI_scan.PNG …

Output:

WM_generic_manual_p1_300DPI_scan.PNG
WM_generic_manual_p2_300DPI_scan.PNG
WM_generic_manual_p3_300DPI_scan.PNG …

WM_generic_manual_p1_300DPI_scan_no_alpha.PNG
WM_generic_manual_p2_300DPI_scan_no_alpha.PNG
WM_generic_manual_p3_300DPI_scan_no_alpha.PNG …

5) Compilation of all alpha-less images into a single PDF file.

I compile all the watermarked no alpha layer versions of the image files into a single PDF file using “img2pdf” via the terminal.

Command:

img2pdf WM_generic_manual_p1_300DPI_scan_no_alpha.PNG WM_generic_manual_p2_300DPI_scan_no_alpha.PNG … -o generic_manual_300DPI_scan.PDF

Input:

WM_generic_manual_p1_300DPI_scan_no_alpha.PNG
WM_generic_manual_p2_300DPI_scan_no_alpha.PNG
WM_generic_manual_p3_300DPI_scan_no_alpha.PNG …

Output:

generic_manual_300DPI_scan.PDF

6) Test, organisation, and archiving of files.

This stage firstly involves testing if the PDF actually works as expected. Whether or not it is functional and whether or not all the pages contained therein are in the correct order. As well as rendering and scaling correctly. To do this I just try to open the file using Mint’s default PDF viewer program (namely xreader), and skim through the document’s pages.

This stage also involves putting each different collection of images from the various stages of this process into their own labelled ZIP format archive file. Then placing all these files into another container ZIP alongside the ultimate resultant PDF.

It is then placed into the local “device_document_scans” folder. Which is then copied over to the backups. Finally, I also upload the PDF by itself onto this website.

Output:

generic_manual_300DPI_scan.ZIP

Containing:

generic_manual_300DPI_scan.PDF
imageset_no_alpha.ZIP
imageset_raw.ZIP
imageset_watermarked.ZIP

Thoughts on tools and equipment

Hardware

As far as hardware requirements go, its just the bare essentials really: a decent scanner and computer. Neither devices need to be anything special, just fit for purpose.

Computer

As for computers, whatever computer you are currently using is likely to be just fine. The main thing that may become an issue is probably system RAM size; and even then only when scanning large (600+ DPI) multi-page documents at the same time.

This is because the scanning program will have to hold all these rather large images uncompressed within the RAM as you scan through the document. RAM may also become an issue when using image manipulation software like GIMP. If it is too low it may limit how many images you may work on concurrently. At the very lest it may limit your ability to do other things on the machine as you process these images. For example running a RAM greedy application such as a modern internet browser (e.g. Firefox or Google Chrome).

Another thing that may be a limiting factor with computers is CPU processing power. When converting file formats or compiling a series of images into a portable document file: your system may freeze or become unresponsive. Especially if the programs used/running aren’t optimised to be multithreaded. Resulting in the instruction sets all getting queued on the same CPU core and thread. This in turn causes the unresponsiveness as user input is queued behind these instruction sets.

To sum it up, any computer with more than 2-4 gigabytes of RAM and an early generation Intel i3 processor will likely suffice. However there are too many variables that may affect whether or not these system requirements are adequate; such as the desired scan image size, resource use of the operating system, scanning program, as well as background processes.

Scanner

Now onto the scanner. Most if not all modern flat bed scanners should be adequate. Chances are if they connect to your computer via USB 2.0 protocol or better than they are new enough to provide the 300 DPI (dots per inch) image quality that I use for digitising my manuals. If you are scanning photographs you may require a higher DPI rate such as 600 DPI to maximize image detail retention.

However since the value of my manuals is rather utilitarian in nature, 300 DPI is a fine image quality for my use case. By ‘utilitarian’ I mean that the information printed onto the manuals is what I am primary preserving, and not each page’s visual aesthetic. Because of this I just need them to be legible without necessarily preserving every minute page detail.

Heck, an argument could even be made to go down to a 75 DPI scan setting: as it’s perfectly useable whilst also minimizing all file sizes; including all intermediary portable network graphic images, as well the final portable document file.

However I find that working with 300 DPI images (which translate to a maximum of 2550*3507 pixels for an uncropped full scan) are a good compromise between image detail and workability/use-ability.

Example of 1200 DPI scanned image unable to be displayed with xviewer

Scan DPI example files


(Feel free to download and test these files on your own system.)

Scan image metadata translations

(Translations based on a scan of the full scanner bed of a PANTUM M6607NW)

Key: scan quality (Dots Per Inch) / image dimensions (pixels) / file size (bytes)

  1. 75 DPI / 637*876 p / 870.9 kB (lossless PNG)
  2. 150 DPI / 1275*1753 p / 4.2 MB (lossless PNG)
  3. 300 DPI / 2550*3507 p / 17.5 MB (lossless PNG)
  4. 600 DPI / 5100*7014 p / 62.8 MB (lossless PNG)
  5. 1200 DPI / 10200*14028 p / 211.9 MB (lossless PNG)

Software

Since my operating system of choice is Linux Mint running the Cinnamon desktop environment, I just use the programs that are either available with the initial install package as standard; or downloaded from the standard Ubuntu repository if necessary.

Simple-scan comes preinstalled with Linux Mint. It is the default scanning utility program. There are more robust alternatives such as ‘xsane’; however my philosophy with regards to tools like this is that one only upgrades tools or seeks alternative tools when the default tools are found to be wanting. I.e. when there’s a particular functionality or quality that the current toolset doesn’t provide; and since the default simple-scan program provides adequate functionality, I don’t need to seek alternatives just for the sake of it.

Moving on. Both GIMP, Image Magick and ‘img2pdf’ are available within the standard Ubuntu software repository. So both can be downloaded using the ‘sudo apt-get install’ commands. However it is recommended that you first use “apt-cache search [program]” command to ascertain whether or not they are available within whatever repository that you are using, if you are using another Linux distro to Linux Mint.

sudo apt-get install gimp
sudo apt-get install imagemagick
sudo apt-get install img2pdf

To sum up GIMP. If you are coming from Windows, you may be used to other image manipulator programs like ‘paint.net’ or ‘Adobe Photoshop’, if not GIMP itself since it is a multiplatform program and available on Windows. Anyway if you have used any modern full-suite WYSIWYG image manipulation program, then GIMP will be an easy enough program to jump on to.

Finally Image Magick. This is a software toolkit that you access via the Bash terminal. Many people, including myself prefer TUI based programs like this due to their ease of use, user interface uniformity, and functional robustness.

I often write scripts including commands that utilise programs that can be accessed via Bash. The programs provided by Image Magick are no different. Once a person gets used to using them, it becomes a natural progression to create scripts which then automate the process.

This would be useful for situations such as batch conversion of multiple files: as scripting allows the user to go AFK or do something else, rather than babysit the process. Scripting and chaining commands like this is probably the greatest strength of CLI/TUI programs over GUI programs.

Closing thoughts

If you aren’t already accustomed to using any Linux based distro, then one thing I recommend keeping in mind is hardware compatibility. It is probably this platforms biggest weakness.

This is specifically because most companies build their products to target the Windows platform. Often facilitating device functionality by using proprietary drivers, and oft times even programs: such as with proprietary controller programs for LED keyboards. These drivers are sometimes absent in Linux. However in most cases there are open-source alternatives.

In the past this used to be a bigger issue. Thankfully the list of supported peripheral devices has gotten much better as of late. As it is at the time of writing, and according to my personal experience as well as as some online reading: most devices work flawlessly plug-and-play; however, some devices work for the most part but are missing some advanced functionality, and some devices don’t work at all.

Unfortunately the best way to tell whether or not your device will work, is by simply plugging it in and fiddling with settings and open source drivers; until it either eventually works, or you give up. Whichever comes first.

As an example: I had quite a few issues with my system not recognising my Pantum M6607NW printer-scanner combo properly, despite official Linux drivers being available on the standard repository, and via the companies website. Even now, after resolving that problem and getting the thing working, I am still having some minor issues with the device.

For example if you paid attention to the images above, you may have noticed that Simple-scan allows for a 2400 DPI scan in conjunction with the Pantum M6607NW. Unfortunately this setting doesn’t work as expected. It does scan the document, and it does it noticeably slower than on the 1200 DPI setting. Which is as expected, due to scan heads collecting more detail from each page segment. However the resultant image has the same pixel dimensions as a 1200 DPI scan. So if there is a higher detail density, it isn’t reflected in a larger image dimension – as is the case with all other DPI settings.

Although xviewer failed to open images of this size, the Firefox browser did not; and upon visual inspection and detail comparison between the 1200 and the 2400 DPI scans: I have concluded that they are identical. See for your self, the files are listed in this article. Knowing this, it is likely that simple-scan is providing an option that the scanner can not support. Although the Pantum’s slower read speed on the 2400 setting has me doubting this conclusion. Since it seems to exhibit a programmed hardware response to this setting.

I could likely find the solution eventually by combing through the official generic M6600 series online manual for my machine, then hunt down more specific documentation … although it is frankly not a priority at this point. As I am not planning on using a 2400 DPI scan setting anytime soon. I only highlight this specific issue to make you aware of the kind of troubleshooting fun to expect on this platform.

So if you are moving to a Linux based platform for productivity purposes, well you can’t say that you haven’t been warned. Having said that, don’t let that stop you from using this platform for this purpose. When it works it works fantastically, and when it doesn’t there is always something that you can do yourself to make it work. You have to get used to being your own tech support.

Best of luck archiving your documents, and as always:
Thank you for reading.

Glossary of terms

AFK: Away From Keyboard
Bash: Bourne Again SHell
CLI: Command Line Interface
DPI: Dots Per Inch
GIMP: GNU Image Manipulation Program
GUI: Graphics User Interface
PDF: Portable Document File
PNG: Portable Network Graphic
PnP: Plug and Play
TUI: Text User Interface
WYSIWYG: What You See Is What You Get

Links, references, and further reading

#0023: Repairing short circuit damage within a ribbon cable

#0023: Repairing short circuit damage within a ribbon cable

Preamble

Sometimes you might come across damage within a ribbon cable similar to the example. The minor burn damage on the example featured was done by a liquid causing a short circuit between two exposed copper pads. As it burned, it created a break between an exposed pad, and it’s respective trace. Cutting the circuit in the process. The short also caused some of the other pads to oxidise, and some minor burning of the ribbon cable’s plastics. This will be a quick tutorial on repairing such a fault.

Please note: I have no images before the initial cleaning and prepping stage. This is because I was halfway through this repair, when I decided that it may be good to document it.

Tools and materials:

  • scalpel
  • tweezers
  • isopropyl alcohol
  • cotton earbuds
  • soldering iron
  • lead solder
  • copper strand from a wire
  • side cutters
  • multimeter

Step 1: Identifying and logging the damages

This should always be a first step before attempting a repair. The reason for this is that the initial pre-work cleaning, is likely to clean away a lot of contextual clues about the location and severity of all the damages. A good visual inspection and initial assessment can save time later on, due to not having to track down any circuit damage that got masked or hidden by cleaning.

Step 2: Cleaning the local area

First thing I did after identifying the location of any potential damage I wanted to repair, was to clean it. In this case I needed to first scrape off the more obvious patches of oxidation and burnt/melted materials using a scalpel. Then thoroughly clean off the pads of the ribbon cable using isopropyl alcohol and a cotton earbud. I paid special attention to the tiny burn hole next to the most damaged pad, making sure to remove any conductive materials from it by scraping it out thoroughly.

Step 3: Test to confirm faults

Using a multimeter in continuity mode, I tested for continuity between the pads surrounding the burnt spot. Perhaps it still contained conductors (such as pieces of the broken pad) that may cause a future short. After being satisfied that it did not; I focused on the particular pad that sustained the most damage, and tested for continuity across this pad and it’s respective trace to see if it was still connected. It was not. All other pads had continuity with their respective traces.

Step 4: Fixing confirmed faults

After identifying only a single fault; this being a break between a pad and it’s trace. I moved to repair it. Firstly I endeavoured to bridge the gap by just tinning across it from the pad to it’s trace. The thought process was that that the mere mass of the solder itself would be enough to bridge the tiny gap. It did not. After that initial failure, I decided that I required a bridging medium; something for the solder to adhere to. In this case I decided to use a single copper strand from a wire.

Using a scalpel, I removed some insulation from the ribbon cable trace above the broken pad. This was in order to have something on that side to comfortably solder the copper strand to. After which, I soldered the wire whilst using a pair of tweezers to hold the tiny copper strand down in place.

Step 5: Cleaning up after a repair

The next step involves cleaning up any messes I might’ve caused during the repair. In this case, whilst trying to initially tin the broken pad, I also tinned the neighbouring pads accidentally. In trying to remove the bulk of the solder, I caused further damage by starting to burn the plastic that the pads are set into. In the end I decided to just leave it be. The repair needed to be functional, not aesthetically pleasing. I did consider using a desoldering braid to remove all the solder, however I was very likely to cause more damage trying, so I opted to just leave it be.

In the end the after-fix clean consisted of just clipping off the excess wire with a side cutter and cleaning off any flux residue with an isopropyl dipped cotton earbud.

Please note: There is no electrical connection between adjacent pads. The burnt plastic between the pads just looks like solder. I told ya it was ugly.

Step 6: Testing the repair

Next. I performed a quick continuity test on the repair with a multimeter; both testing for continuity across the pad to it’s trace; and testing for a lack of continuity across neighbouring pads. These tests take basically no time to do and can set my mind at ease. I do these types of tests even when a visual inspection indicates that it’s not necessary.

The real test is putting the device back into service and seeing if it functions as expected. In this case the ribbon cable that I repaired was from a laptop’s integrated keyboard. Although the ribbon cable fitted more snugly into it’s receptacle or socket than I wanted. It still fitted and functioned properly. The keyboard was fully functional after this repair. Huzzah!

Closing thoughts

I apologise if this article came off as a little patronising; especially given the quality of the example repair, the missing “before” picture, and the fact that it contains mistakes front and centre. Generally, I find step-by-step guides like this one difficult to write, without sounding either needlessly pedantic or excessively didactic. Anyway, even if the exact specifics are not useful to you, I hope the general steps would be. Identify. Clean. Test. Fix. Clean. Test. Then Profit. That is if it works, if not: then go back to testing for faults.

Thank you for reading.

#0017: Creating a Toy Drag Racer Car

#0017: Creating a Toy Drag Racer Car

Prelude

This will be the first in a series of articles on making crap from garbage. I intend to build on this initial car, by adding more functionality and complexity down the line later. The purpose of this series of articles is to illustrate how accessible our hobby actually is. All you really need is access to information, basic tools, and most importantly: a little motivation and imagination.

Basic drag racer toy car.

As you can probably tell from the pictures; this toy car once had additional components that I removed for this write up. These included: 4 LED “””head-lights””” (2 white, 2 red); a jumper cable and switch, to allow the motor to be run using only one of the batteries at a time (for a slower speed); and additional wiring to allow the motor to run in reverse. Essentially whatever bollocks I felt like lazily sticking into the thing.

This should however illustrate that you can keep adding complexity to the basic frame work … Yeah, that’s why I reused the same haggard little tupperware container with the two unused switches: to make a point. It wasn’t abject laziness at all. Nah.

One could even keep adding complexity and replacing components until a simple drag racer can turn into a self steering robot. This could be done by using ultrasonic sensors, microcontrollers, and servo motors just as an example. However the basic framework is a good starting point.

Toy demonstration

Making the thing.

Tools and materials.

So what do you need to make this masterpiece? A soldering iron will help but twisted wire connections and electrical tape will do. Work with whatever you have on hand. I’ll just list out what I used.

Tooling:

  • soldering iron
  • heat gun
  • DC power supply
  • multimeter
  • precision knife

Consumables:

  • electrical tape
  • heat shrink
  • hot glue

Materials:

  • wires
  • tupperware box
  • gears and wheels kit
  • switches
  • AA battery holder
  • AA batteries
  • rubber-band (elastic band)
  • 3 volts DC motor

Build process.

Its largely self explanatory from looking at the pictures but I’ll give ya a quick write up if you insist on reading. Nerd. Anyway, get either a cheap wheels and gears kit (yes I am a hippo-crit) from an online store, or salvage wheels from broken toys if you have any, or use bottle caps even. You can even make decent wheels from either cardboard or by working random stiff plastic with a saw and a file.

Next, cut appropriate holes into the plastic box, sardine can, old butter tub, or whatever you’re calling a chassis. Then affix the motor into the chassis using hot-glue or tape. I wanted to use a belt driven system for no other reason than I wanted to use a belt driven system. So I used a couple of belt pulleys from the gear kit and a near dead elastic band as a drive belt. I know what you are thinking, and yes it is very unreliable.

If I were to redesign this for simplicity and reliably; I would just insert the motor directly into one of the rear wheels and power it that way. Better yet you can use two motors, one for each rear wheel. Anyway, next, throw in a switch, a useless fuse just for fun, and an occupied battery pack. Done. Enjoy.

The project is so simple it seems silly didactically going through every step of slapping it together. Just look at the pictures: yours should be like that but good. The point is to make it using the materials on hand. Improvise as a matter of course.

One thing that might be good to improvise on is by using a salvaged battery holder if you can not find one. I know not everyone has access to broken Poundland fairy lights. For example the motor here came from a cheap hand held fan. I could easily use it’s chassis moulded battery holder instead and just butcher it to fit. No worries.

To source the material I recommend a discount store like the aforementioned Poundland or the 99P shop. You could probably get all the materials for less than a fiver. And if you’re really on a budget, then I recommend the dumpster behind Poundland. Don’t ask me how I know.

Belt demonstration

Schematic

It’s not really necessary given the simplicity of the circuit. But I’ve included one never the less for the sake of completeness.

made with digikey.com/schemeit/

Circuit power use.

To satisfy some curiosity I decided to measure the power usage of the motor, and power delivery that the batteries can supply. I did it to give me an idea of how much power the batteries are able to provide, and how much of that available power the single motor uses. That way I’d know what’s limiting performance, should that become a concern. And it will once I decide to start adding components, such as additional motors.

Results:

Tested with a 6 Ampere max bench power supply against mismatched old batteries. Guess which performed better?

(BPS = Bench Power Supply)
BPS powered Motor (spinning freely): 3V @ 0.25A (0.75 W)
BPS powered Motor (jammed): 3V @ 2.71 (8.13 W)
Battery powered Motor (spinning freely) #1: 3V @ 0.18A (0.54 W)
Battery powered Motor (jammed) #1: 3V @ 2.02A (6.06 W)
Battery powered Motor (spinning freely) #2: 3V @ 0.29A (0.87 W)
Battery powered Motor (jammed) #2: 3V @ 0.70A (2.10 W)

My conclusion on the circuits power usage is that the junk batteries that I used for this application are not able to provide the maximum amount of current that the motor can use when spinning freely in the first test. And in the second test although the batteries performed nominally when free spinning, when the motor was jammed causing it to draw more current; the batteries failed to provide the needed current. So the batteries are the limiting factor here. Probably because they’re dying. From this slapdash test, I can tentatively conclude that if I wanted to add an additional motor, I’d also need to scale the power supply relatively … or use new batteries.

Really I should’ve tested it with two fresh 1.5 volt alkaline batteries as a control. Then I could’ve tested the motor, by adding an additional two fresh 1.5 volt batteries (in 3 volt series) parallel with the base two, to allow for a higher circuit current output without increasing voltage. That would’ve been a better test. But I took all the photos for this maybe two months prior to doing this write up on it; and I don’t feel like going back to it for something this minor. However, I will for the next article that uses this drag racer. This test was bad.

Closing thoughts.

Why make this thingy? (technical term)

I wanted to make a very basic bare-bones motorised toy car. The reason for this is that I think its a really good project to get a complete beginners feet wet in electronics, and more broadly in getting to actually making things in general. The scope of the project is small and its largely practical. There is very little in the way of actual measurements and maths. In addition, the tooling needed and materials used are basic and readily available, as they are salvaged cheap electronics and household sundries.

I think something like this is ideal for children especially since once they’re done, they end up with a toy they made themselves. Every time they play with it, they might get that little endorphin kick saying ‘I made that’ and before you know it — they’ve been bitten by the bug.

Another reason why a project like this is good is because unlike how many get a start in the general electronics hobby today – i.e. by purchasing kits and completing them. Creating something useful or of-value from junk promotes and develops a better skill-set then just putting together pre-made puzzles. Sure kits can develop people’s technical skills in doing so (like soldering), a familiarity for the various components involved, and even some trouble shooting and diagnostic abilities in order to get the thing that they put together actually working.

Usually though, in my experience once the kit is complete; be it an electronic dice, an AM radio, or what have you. It is done. At which point it is put down and forgotten. This is unless the person gets interested in one of the higher concepts the kit introduced them to; like in the case of how putting together a DIY radio kit can become a gateway to repairing radios or the ham radio hobby as a whole.

This is of course a good thing. However in general, purchasing kits has in my opinion limited returns (such as mentioned above), and can get overly consumeristic in nature. Buy the kit, make the kit, buy the next kit, make the next kit; and so forth. So what do you do when you don’t have the funds for the next kit, or have a child that becomes bored and thinks that’ll all this hobby has to offer.

Well that’s where one has to become inventive. Create your own kit. And from what? Whatever is around. Putting together machines of your own creation from junk develops imagination and creativity in people. It teaches them to see more than what an item is, instead it promotes seeing the parts it is made up of, and what it could become.

That old microwave the neighbour left out. Is actually not just worthless e-waste. It is actually a magneto, various high power resistors you can use as a resistive load in your experiments, and even a high voltage transformer that’s likely to get you killed. Obviously I am joking about the microwave, I am not advocating for inexperienced or immature people start with mains power electronics. Learn, but learn safely. I.e. Low voltage direct current devices.

Working with salvage also gives people very localised and consequently practical (read valuable) experience. This is because they’ll be working and tinkering with the local devices available to them. The same ones in their everyday environments, and in doing so they will gain insights into their workings. Insights that may lead them to modifying and repairing some of the same items for future fun and profit.

Note: I read over this, and even I can tell it’s pretty bloody preachy. I am not saying kits are bad, they are just another avenue for this hobby. Sometimes it’s nice to play with something that isn’t already broken. However I do think that (certainly basic) kits are transitionary. You make kits then you move on to fucking about with whatever takes your personal interest. And like I stated, kits are often a gateway drug to your chosen field.

Make no mistake what you are reading is the toned down version. The first draft was hard for even me to read without rolling my eyes in my skull. No need to thank me for sparing you that, but you are most welcome.

Thanks for reading.

#0003: Basic techniques for connecting wires

#0003: Basic techniques for connecting wires

picture comparing: pig-tail, straight solder, and western union splices

Connections discussed:

  1. Straight solder splice
  2. Pig-tail splice
  3. Western Union splice
  4. T-junction splice

STRAIGHT SOLDER SPLICE

picture showing two wires with their exposed copper ends coated in solder
picture showing a basic straight solder connection between two wires

The straight solder connection is made by aligning two opposite facing wires in adjacent-parallel, tinning them individually, then soldering them together. This joint is most suited for smaller gauge wires. Especially in low-voltage or low-current applications.

I find I use this joint frequently when prototyping and stringing various PCB modules together, such as power-supplies and buck-boost converters. This is because it allows me to make a more than strong enough bond very quickly; and without damaging the wires, by avoiding subjecting them to repeated mechanical strain. For example: by twisting them together and soldering, then de-soldering and unravelling them whenever I want to disconnect a module; as is the case with the other types of joints. With this connection however, it is simple: align and solder to connect; then apply flux, heat, and pull apart to disconnect.

The straight solder connection is actually rather strong in my opinion. When applied properly, it creates a bond that can not be pulled apart easily. I tested this joint by wrapping the wires around my hands then trying to pull the joint apart. It might eventually give, but only after considerable force is applied.

Despite it’s initial success with my basic stress test; I still wouldn’t recommend using this type of joint for any permanent applications. This is because, in my opinion, I don’t believe that it will stand up well in most real-world settings. Settings that involve: temperature swings, vibration, or constant stress on the wire and joint. These things can exacerbate any small imperfections in the weld to the point that they can create fissures that can either cause problems like intermittent connections or outright brake the bond. Since the solder is the only thing keeping the connection, any stress applied to it isn’t mitigated by anything. This strain coupled with environmental heat would make this type of connection unreliable in the field. An example of this would be wiring around an engine.

Still though, as long as the wire is not subjected to any real or ongoing strain in its application, it is not a bad option to utilise this type of connection. Especially for temporary or semi-permanent add-ons to an already established system. For example adding a voltmeter module to an electric bicycle to keep track of the battery levels. That way the module can quickly be de-soldered off or be further modded later with a switch as an example. This type of bond also has the smallest footprint. Allowing smaller sized heat-shrink to be easily applied as insulation.

PIG-TAIL SPLICE

picture showing a pig tail splice between two wires
picture showing a pig tail splice between two wires, the connecting twist stands at a right angle between the two connected wires, revealing some broken copper strands within the connection.
picture showing a pig tail splice between two wires, the connecting twist has been folded down onto one of the wires

The pig-tail or rat-tail splice is probably the most common type of connection that I have encountered in the wild. It is made by holding two wires in adjacent-parallel (facing the same direction), then twisting the exposed ends together. Its a quick and dirty solution to make a good mechanical connection. Usually this type of connection is insulated with either sticky tape or even heat-shrink for a semi-permanent solution. It is not soldered in many cases, as the twists and tape tend to make a ‘good enough’ connection for the use-case.

The alignment of the connecting wires is something to take into consideration when deciding whether or not to use this splice. In cases where the wires are to remain adjacent-parallel and facing the same direction; the pig-tail splice is a good candidate. It will allow the user to join two wires next to each other, whilst minimising any change of location, necessary in order for the wires to accommodate the new connection. Example use-case: connecting 2 or more adjacent wires within a ribbon cable. Additionally, with this setup: the connection can be easily soldered and insulated with heat-shrink by sliding it over the open end.

However in cases where the user is joining two opposite facing wires, they are usually left with a connection made up of a twisted pair that veers off at a right angle. This is then folded onto one of the wires in order to apply insulation. This is mechanically weak, as it concentrates any stress on the wire/connection or more accurately “pulling force”; at the bend. The first twist where the two wires meet.

This configuration of the pig-tail splice rarely takes solder well without ending up with an overly large footprint or bulge that the user has to then slide heat-shrink over. It is also too easy to melt the wires whilst soldering because of how close the insulation on the wires are to each other.

To conclude, this connection is good in solder-less temporary or semi-permanent applications. But if you want a more permanent bond (especially for opposite facing wires), the western union splice is a far better solution.

WESTERN UNION SPLICE

picture showing two wires being lined up for a connection
picture showing the exposed copper ends of two wires crossed over each other
picture showing an unsoldered western union splice between two wires
picture showing a western union splice between two wires

The western union splice is named after the Western Union Telegraph Company. This connection involves crossing the exposed ends of two opposite facing wires together, at a mid-point between the wire’s exposed tip and the start of it’s insulation: in an “X” shape. Then twisting them around each other’s exposed base sections. Continue twisting until the insulation of the opposite wire is reached. Then trim off any excess exposed wire tips. This makes a linear and very strong mechanical connection between the two wires; by maximising the contact area the wires have with each other within the connection. It also functions as a knot of sorts, and once properly soldered, it becomes essentially stronger than either wire itself. In addition it has a relatively small footprint and consequently takes to sliding heat-shrink over it rather well.

This is probably my most favoured splice for permanent connections. However for those same reasons, it is also largely inappropriate for temporary applications. This is because it becomes a hassle to de-solder and untangle the wires. This process will also almost definitely damage the wires involved; by fraying and breaking some copper strands from the stress of unravelling.

THE T-JUNCTION SPLICE

picture showing a T junction connection between three wires
picture showing a T junction connection between three wires

The “T” junction splice is any connection where you add a third wire to an existing connection. The most basic version involves removing the insulation from the mid section of a wire; then wrapping another wire around the exposed section before soldering it in place. Then insulating it. This method can also apply to any of the above connections – and the strength of the additional connection usually depends on the strength of the underlying connection.

You could opt to pig-tail together three wires into a T-junction (or four into an “X”, etc…), or straight solder three wires, or even create a western union splice, then tightly hitch the third wire over that connection for maximum strength.

At its most basic a ‘T’ junction splice is exactly that. Three wires connected together in a rough ‘T’ shape. Everything else is up to the user, and largely depends on the use-case and it’s needs.

SOURCES / REFERENCES / FURTHER READING:

https://en.wikipedia.org/wiki/Western_Union_splice

https://en.wikipedia.org/wiki/T-splice

https://en.wikipedia.org/wiki/Rat-tail_splice

https://en.wikipedia.org/wiki/Point-to-point_construction

https://en.wikipedia.org/wiki/Printed_circuit_board

https://en.wikipedia.org/wiki/Solder

https://en.wikipedia.org/wiki/Flux_(metallurgy)https://en.wikipedia.org/wiki/Soldering

#0002: Cleaning up after an alkaline battery leak

#0002: Cleaning up after an alkaline battery leak

picture depicting a stack of rusted and leaking double A batteries

This will be a rather basic guide on how to clean out a device after an alkaline battery leak.

Whenever I come across an old device, that for some initially unknown reason refuses to power on. Chances are, that someone left disposable alkaline batteries inside it, and that they have leaked. There are a number of reasons as to why people leave batteries inside devices. Predominantly: laziness, ignorance, or forgetfulness. There are also a number of reasons as to why these same forgotten batteries leak. Batteries with mixed charges, reverse charging each other, or a constant low current draw causing leaking; are but two examples.

Unfortunately, a more in depth look into what causes disposable batteries to leak is outside of the scope of this article. However it is something that I am interested in exploring at a later date. Check the further reading section of this article for the hotlink to that, when I eventually get round to penning it.

I cannot count the number of times I have opened the battery compartment of a device, that has been left in storage for a while; only to be greeted with a vented battery, rust, and the the blue-white fuzzy carpet of alkaline crystals growing out of it. Meshing into, fusing with, and corroding the negative terminal’s spring contacts. This infection then proceeded down the circuit and further into the device and onto more complicated/valuable components. In this regard, an unstemmed battery leak has the potential to brick a device.

picture depicting heavy alkaline battery leak on battery spring terminal

So, how do you deal with it? Well, if caught early and the leak hasn’t progressed far beyond the battery itself, and a bit of surface level corrosion on the spring contacts; then it is really not much of an issue. A quick wipe down with a damp cloth after disposing of the batteries, should suffice. I recommend using isopropyl alcohol to dampen the cleaning cloth, mainly because it becomes non-conductive very quickly by evaporating readily. It also doesn’t leave any contaminants like water might. However water is fine to use in a pinch; just make sure it is fully evaporated and that there is no substance residue left after cleaning; before you power up the device.

picture depicting very light alkaline battery leak on battery spring terminal

If the leak has had the time necessary to progress further into the circuit and deeper into the metals. That’s when you have to take more invasive steps in order to remove it. There are two main ways to deal with an advanced battery leak. Which one to use, largely depends on circumstance. The most important factor being whether or not the affect parts can be removed from the device.

Method #1: Acid Bath

The first method of remedy, requires the removal of the affected parts and the use of an acid bath. Removing the affected parts, will likely require de-soldering. Next, create a bath, of vinegar and water at a ratio of approximately 1:3. So 25% vinegar and 75% water, or thereabouts. This leaves you with a mildly acidic solution for you to submerge any affected parts within. Mix the solution well, then drop the parts in. Leave it for some time. How long for based on your own judgment. I recommend 30 minutes to a couple of hours depending on the invasiveness of the alkaline crystals into the metals.

picture depicting an acid bath (blue tub with vinegar-water inside it), and a pair of forceps

Remove the parts from the solution when you think that they have been in there long enough. At this point, they will require brushing down, to remove any stuck on materials. Use a strong bristly brush for this, something like a firm toothbrush will do. For those wondering, a wire brush would probably be overkill for this application, especially since the subjected parts would likely be rather small, and wire brushes are traditionally made for uses with larger items. Wire brushes will also likely remove the finish on the metal parts, that is if the acid bath hasn’t done so already.

picture depicting heavy alkaline battery leak on battery spring terminal

The main reasons why I recommend using a mildly acidic solution to counteract the alkaline crystals is: one, in order to minimise the severity of the reaction between acid and alkaline; and thus minimise the chances of additional corrosion or damage done to the metals in the process; and two, to minimise the chances of the acid removing or damaging the metal’s finish by reacting with it. It should be noted that plenty of parts in modern mass produced devices are made up of mixed metals, then given a chrome finish for uniformity.

picture depicting battery terminals with chrome finish removed by the acid bath

I should note that when I say ‘part’, I am referring to simple primarily metal constructs within devices; such as spring terminals or basic switches. I am not referring to more complicated components such as resistors, capacitors, transistors, or anything more sophisticated than those examples. This is because the acidic solution is very likely to compromise the internal structure or chemistry of any components submerged within it, if the leak’s corrosion hasn’t done so already. Bricking the component in the process. More on what to do with leak affected components mentioned later.

picture depicting two leak corroded battery terminals with chrome finish removed by the acid bath

After brushing all foreign materials off of the parts, dry them off, then wipe them down with a cloth laced with isopropyl alcohol. Continue until you are confident that you have removed all contaminants including traces of alkaline crystals and the acidic solution. Once this is done leave the parts to dry fully, before then placing them back into the device and likely soldering them back into the circuit they come from. That’s it, done.

Method #2: Acid Wrap

The second method of removing alkaline crystals is used when the affected part cannot be removed either from the device or it’s circuit for whatever reason. A good example of this is when a part is either welded, crimped, or glued into place; making it’s removal potentially too destructive to consider lightly.

picture depicting two spring contacts, one clean and the other covered in alkaline crystals
picture depicting two spring contacts, one clean and the other covered in alkaline crystals (front view)
picture depicting two spring contacts, one clean and the other covered in alkaline crystals (back view)

This method requires either tissue paper or cloth. Id est, something that can soak up liquid and cling to a particular structure without external pressure/force. I use tissue paper for this example. Soak the tissue paper in a diluted acidic solution; enough so that it has plenty of solution available but not enough that it drips excess. Then wrap it around the affected parts and wait for time, before removing it and brushing off any loose materials. Rinse and repeat until it looks done. Then clean and wipe down the part with an isopropyl laced cloth. Done.

You can adjust the ratio of vinegar to water to your liking. I still recommend a mildly acidic solution to minimise the severity of the reaction (and any damage caused from it), but the more acidic the solution is, the quicker it’ll dissolve the alkaline crystals off of the affected parts. From my experience a ratio of 1:1 seems to work out well.

Another tip for this method is to properly isolate the rest of the device from the part you are currently working on. This is done to avoid any accidental drips from the tissue paper or off-spray caused by brushing. Vinegar-water and electronic components are best left separated. With that in mind, I recommend using a plastic bag and tape. The plastic bag functions as a waterproof membrane and the tape holds it in place. Simple.

picture depicting two spring contacts, one clean and the other covered in light rust (viewed with chassis)
picture depicting two spring contacts, one clean and the other covered in light rust (front view)
picture depicting two spring contacts, one clean and the other covered in light rust (back view)

Dealing with components

Now that the basic method of cleaning metal parts has been explored, you may be wondering as what to do when the leak has reached more complex components. Well, the answer is simple. Try to remove whatever battery residue you can mechanically; i.e. just using a brush or a small chisel of some sort. Then de-solder/remove the component from the circuit. Test it appropriately. I recommend having both a multimeter as well as a multi-function tester on hand for this. If it is still within specification, solder it back into circuit; if not, replace it. There is not much one can do for any affected components beyond this. Once a capacitor or resistor is broken, it needs to be replaced.

Conclusion

As a final note, I should also mention that in a lot of situations: replacement of the affected metal parts is probably the more appropriate recourse to severe leak damage then repair might be. This means replacing spring terminals, and creating jumper wires as replacements for corroded PCB traces. This is because the repair can weaken the metal, leaving one with brittle spring terminals or a trace with more resistance in it than initially intentioned. However having said that, if you either can not remove the part, or don’t have the prerequisite replacements: then an ugly repair is better than no repair at all.

Sources/References/Further reading:

https://en.wikipedia.org/wiki/Alkaline_battery#Leaks

https://upload.wikimedia.org/wikipedia/commons/7/76/Alkaline_Battery_Leakage_Inside_a_Product.png

https://en.wikipedia.org/wiki/Isopropyl_alcohol

#0001: On creating a website

#0001: On creating a website

image depicting "w w w ."

I find myself sitting here at a loss as to what topic I should go with for my first article on this site. It needs to be something interesting, and more importantly this first post will set the standard for those to come; so it needs to be good.

If you read the title, you probably can guess what topic I chose. Yeah, after spinning it in my head for a while; I decided just to go with how this site came into existence. This is after all supposed to be a technical blog (of sorts), so it seems fitting that we start with the basic technology of this website itself.

So what is it that you actually need to create a website? Well, like most questions in life, the answer is: it depends. In this case I needed three things to get up and running: 1) a domain name, an official registered name for my website; 2) a site-builder, software to help me make the thing; and finally 3) a host, some always-online servers to hold the code and contents of the site, these are the computer(s) that users will connect to when they visit the website.

image depicting logos of HTML5, JS, and CSS3

Initially I thought that creating a website would be no sweat. Just get a domain name, get a host, and hash out something in HTML, JavaScript, and CSS (the holy trinity!). No builders necessary. No worries. It should take me exactly “one weekend” to do this. Right?

Well, unfortunately no. I think I fell victim to my own hubris, or more accurately the Dunning-Kruger effect. There was and is so much more to the process that I was unaware of, that I actually thought it’d be straight forwards and easy. Having said that however I should outright state; that yes, creating a web site has never been simpler or easier for the uninitiated. With site builders and turn-key solutions (like wordpress.com or squarespace.com for example); that largely abstract out all the mechanical technicalities, into simple graphic interfaces that a non-technical person can intuitively operate. A good real-world example customer for these would be an artist creating an online portfolio of their works.

logo of squarespace.com

These solutions however did not particularly interest me much, as I am interested in the technicalities of the actual infrastructure of the website itself. This I found to be something that is largely abstracted out of relevance by these public facing and user friendly interfaces. Another concern I’d like to voice is that, although these company services do make it very straight forward to get an online presence. They do however charge you for every step on the way, and at the end of it you may end up with something that you don’t exactly want and have spent money on it to boot.

Examples include: purchasing a packaged feature-set that after gaining some experience you realise that you have no use for; or in a bid to save money: purchasing the cheapest packages available then realising after the fact, that your use-case requirements are in excess of the service package’s limitations.

This was one of my primary concerns, and as a result caused me to be very cautious when selecting something out of the numerous and quite frankly somewhat overwhelming options. So many companies, site-builders, hosts, and all the packages and deals that they use and offer. So, after some time being put off from pulling the trigger on anything in particular; then procrastinating (naturally). I finally decided to write up a clear criteria of exactly what I wanted.

I always find that when venturing into the unknown (a bit melodramatic granted), it pays to have a plan, a goal, a list of objectives, a criteria, whatever you want to call it. I have also found it most effective for that plan to be concise in nature and hierarchal in structure. Id est: a numbered list.

So here’s mine:

  1. I wanted a basic website for blogging and a light hosting of files. It will consist predominantly of written articles, image rich guides, as well as to host small to medium files and programs of my own creation (<100MB each). This means the storage size needs to be in excess of 50GB. All those files and HD pictures add up quickly.
  2. I wanted my own unaffiliated domain name. It looks more professional in my opinion. For example: mywebsitename.net instead of something like: mywebsitename.wordpress.com or mywebsitename.googlesites.com.
  3. I wanted the site to be adequately secure against malware, spam, and intrusion with minimal intervention on my part. In other words I wanted to be hands off when it came to securing my contents. I need good ready on-hand security without having to divert my time and efforts into a rabbit-hole of research, at least for now.
  4. And finally, and most importantly. I wanted to be able to have this whilst maintaining a degree of privacy. I want an online presence without freely advertising my personal information to the world at large.

So that’s it: basic small bloggers site, with it’s own name, adequate hosting, some protection, some privacy, and with a comfortable storage limit. Obvious right, well not so in my experience. There is merit in writing down the obvious and enumerating it. It brings it to the front and centre and adds it to an objective hierarchy that one can work from.

In the end, after a frustrating period of paralysis via analysis, and exploring a multitude of different options on the market; I decided to just take the shortest route to my goal. Perhaps not the best route for my personal use-case, but that is the kind of thing one sees with experience and hindsight. So I decided to pick a reasonable option and just jump in and see how it goes.

And that is exactly what I did; I ended up going with wordpress.org as my choice of website builder. Three main reasons: one, it’s ubiquity – it is well known, well used, and well documented. So any issues I may come across, chances are good that someone else has, and probably documented a solution to boot. The second reason I liked WordPress, was because of it’s open-source and community driven nature. This makes it versatile meaning if there is a particular feature I wished for, chances are that someone else has, and has a documented implementation of it somewhere. Lastly, the third reason is simple, it is free. This allowed me to tinker with it without any financial investments.

As to why I didn’t just build the website out from source myself. Well beyond making a basic website consisting of static webpages linked together, this was beyond my skill-set and interest level at this time if I am honest. I wasn’t willing to spend the time and effort to learn to implement every little feature that I wanted for it. This could include anything from animated drop-down menus, to allowing user comments, or embedding videos within articles. It would have required more of a personal investment than I was willing to put in at the time; especially since I just wanted something useable and customisable to be up and running in a timely fashion. That, and I couldn’t justify taking time from other projects and responsibilities, the reward to work ratio wasn’t sufficient.

image depicting wordpress.org logo next to wordpress.com logo

Please note, there is a distinct difference between wordpress.org and wordpress.com. WordPress.org is just the open source website builder software. Whereas wordpress.com is a company that bundles in the website builder with their own hosting and support services. They are not the same entity.

Next up, hosting. This one is quite simple since as far as I know, one competent host is as good as another. I went with bluehost.com since they were recommended from wordpress.org via affiliate links. Their prices for what I wanted were also reasonable. Funnily enough, I got my domain name via bluehost’s partners. So it was a case of choosing WordPress and being funnelled to affiliates and partner’s services for the rest. It made things simple and since I actually have little experience in setting up websites; I was more concerned with not using the “wrong” company (dodgy or otherwise) or “wrong” tools (wasting time learning inferior tool sets – been there done that…), than I was concerned with choosing the best deal. As long as what I got was what was advertised, and what was advertised was good enough to get started.

With the WordPress optimised setup, I ended up with a “shared webhost service”. Essentially my website would be sharing the server with many others like it. This is because a simple WordPress website doesn’t really need anything that requires dedicated hardware. For example: large processing capabilities for online gaming. This website wasn’t going to be folding proteins or using their server for automated stock trading or anything like that. It also didn’t need a large reservoir of storage space available, since it wasn’t an archival or file hosting website.

The “shared webhost service” is the one of the cheaper options available. Others include a “virtual private server”, this is a mid-tier option allowing the subscriber to have a virtual server with it’s own allotted RAM and CPU usage. Additionally, and probably the most expensive option available is renting a dedicated server. Its exactly what it sounds like, the subscriber just rents a box dedicated to just them; and consequently they can have complete control over it. The latter two mentioned here are overkill for this humble hobbyist’s blog. They are more appropriate for the other examples I mentioned above.

While I was going through the processing of setting up the host; and looking through their various options; two features/services that they offered popped out to me, and I would like to highlight them for you. The first is “domain privacy” and the second is that of “SSL Certificate”.

Domain Privacy. This basically allows you to own the website without having your personal information plastered all over whois.com (or who.is, or whois.net, or what have you). Websites that comb website registrars for ownership information. As the newly minted website owner, your contact information would be listed there. Alarmingly, this includes: your full name, address! and any contact numbers or email addresses you provided whilst registering the site. It should also be noted that lying on the registration is apparently punishable by law (I read that somewhere during the signing process, but I can’t find a direct reference or link stating that. Apologies). Unfortunately I can’t actually speak to exactly where it applies, and what kind of punishment.

This is not really a problem for a business, with its own legal identity and premises; however it most certainly a problem for the private individual. If you then purchase “domain privacy” from the hosting or registering company, this will result in them acting as a mediator and using their information as a substitute for yours on these public listing.

I believe different countries have different laws regarding public displays of website owner’s personal information, via sites like who.is. Some permit it by default, others favour the owner’s privacy and don’t allow the display by default. My concern here is, although I live in a country that [with regards strictly to this] favours the individual’s privacy, the company that I’m doing business with is in another country, one that does not. Whose countries laws takes priority? Is seemed like the more prudent thing for me to do was to just purchase this service, rather than leave it to chance.

The second feature of note I encountered, is that of a “SSL certificate”. Put simply this gives the website a certificate of authenticity. This is issued from some association charged with verifying that the websites users connect to are who they say they are. In addition this allows secure connections to site servers using the HTTPS protocol. This is important to me as I know I am rather reticent to visit many non-https websites, especially since many modern browsers such as Firefox (circa 2020), warn users who connect to non-https or unsecured websites. Its just another layer of security to take advantage of. One that grants a level of authenticity.

image depicting orange "CPanel" logo

Moving on. It should be noted that when I purchased the hosting I also got the ability to setup my own emails system using cPanel. cPanel is a general control panel for web hosts that enables you to control all the various programs for your website. In this case an email client. I decided to go with one central email address (mail@tinkerersblog.net) using the webmail service and the roundcube mail client. There are other options of email client available, including: Horde and squirrelmail.

That’s basically the process from start to finish. At this point I have a basic WordPress template site and email. All that was left was to customise it to my liking and create content. In retrospect, the biggest hurdle for me was the over-abundance of choice on the market. It required an exhaustive process of researching and vetting the various services, and options available there-in. Other than that, once you have chosen a particular company, host, or web-builder you like; they tend to do a good job of keeping you in their ecosystem for the rest of the things you need to get set up. They do this predominantly via affiliate links and discounts.

The funny thing is now that I am committed and have paid approximately £180 for a 3 year deal for this site; I still think that maybe I could have found something better. A particular tool-set, or cheaper deal that would suit me more, maybe I invested into a bad company or technology, or perhaps I made a mistake when buying optional add-ons? Who knows? I guess I will, later. Still though, it is a nagging feeling that lingers on after the decision has been made.

Besides, the primary objective was to get started and that has been done. It’s only really with hindsight that I can make better decisions for my particular use-case; and that comes later. I guess that Steven Wright quote holds water here: “Experience is the thing you get just after you needed it” … I am paraphrasing. Anyway, That’s all for my musings.

Thank you for reading.

Sources / References / Further reading:


https://whois.icann.org/en/domain-name-registration-process
https://whois.icann.org/en/about-whois
https://en.wikipedia.org/wiki/WHOIS
https://en.wikipedia.org/wiki/CPanel
https://en.wikipedia.org/wiki/Webmail
https://en.wikipedia.org/wiki/Roundcube
https://en.wikipedia.org/wiki/SquirrelMail
https://en.wikipedia.org/wiki/Horde_(software)
https://en.wikipedia.org/wiki/Domain_privacy
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript
https://www.dreamhost.com/blog/wordpress-differences-beginners-guide/